Selective Linear or Quadratic Optomechanical Coupling via Measurement
نویسنده
چکیده
The ability to engineer both linear and nonlinear coupling with a mechanical resonator is an important goal for the preparation and investigation of macroscopic mechanical quantum behavior. In this work, a measurement based scheme is presented where linear or square mechanical-displacement coupling can be achieved using the optomechanical interaction that is linearly proportional to the mechanical position. The resulting square-displacement measurement strength is compared to that attainable in the dispersive case that has a direct interaction with the mechanical-displacement squared. An experimental protocol and parameter set are discussed for the generation and observation of non-Gaussian states of motion of the mechanical element.
منابع مشابه
Tunable cavity optomechanics with ultracold atoms.
We present an atom-chip-based realization of quantum cavity optomechanics with cold atoms localized within a Fabry-Perot cavity. Effective subwavelength positioning of the atomic ensemble allows for tuning the linear and quadratic optomechanical coupling parameters, varying the sensitivity to the displacement and strain of a compressible gaseous medium. We observe effects of such tuning on cavi...
متن کاملStrong and tunable nonlinear optomechanical coupling in a low-loss system
A major goal in optomechanics is to observe and control quantum behaviour in a system consisting of a mechanical resonator coupled to an optical cavity. Work towards this goal has focused on increasing the strength of the coupling between the mechanical and optical degrees of freedom. However, the form of this coupling is crucial in determining which phenomena can be observed in such a system. ...
متن کاملQuantum backaction and noise interference in asymmetric two-cavity optomechanical systems
We study the effect of cavity damping asymmetries on backaction in a “membrane-in-the-middle” optomechanical system, where a mechanical mode modulates the coupling between two photonic modes. We show that when the energy difference between the optical modes dominates (i.e., in the adiabatic limit) this system generically realizes a dissipative optomechanical coupling, with an effective position...
متن کاملCooling and squeezing via quadratic optomechanical coupling
We explore the physics of optomechanical systems in which an optical cavity mode is coupled parametrically to the square of the position of a mechanical oscillator. We derive an effective master equation describing two-phonon cooling of the mechanical oscillator. We show that for high temperatures and weak coupling, the steady-state phonon number distribution is nonthermal (Gaussian) and that e...
متن کاملAdvantages of coherent feedback for cooling quantum oscillators.
We model the cooling of open optical and optomechanical resonators via optical feedback in the linear quadratic Gaussian setting of stochastic control theory. We show that coherent feedback control schemes, in which the resonator is embedded in an interferometer to achieve all-optical feedback, can outperform the best possible linear quadratic Gaussian measurement-based schemes in the quantum r...
متن کامل